skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Stacey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 7, 2026
  2. Free, publicly-accessible full text available February 5, 2026
  3. Fungal pathogens commonly originate from benign or non-pathogenic strains living in the natural environment. The recently emerged human pathogen,Candida auris,is one example of a fungus believed to have originated in the environment and recently transitioned into a clinical setting. To date, however, there is limited evidence about the origins of this species in the natural environment and when it began associating with humans. One approach to overcome this gap is to reconstruct phylogenetic relationships between (1) strains isolated from clinical and non-clinical environments and (2) between species known to cause disease in humans and benign environmental saprobes.C. aurisbelongs to theCandida/Clavisporaclade, a diverse group of 45 yeast species including human pathogens and environmental saprobes. We present a phylogenomic analysis of theCandida/Clavisporaclade aimed at understanding the ecological breadth and evolutionary relationships between an expanded sample of environmentally and clinically isolated yeasts. To build a robust framework for investigating these relationships, we developed a whole-genome sequence dataset of 108 isolates representing 18 species, including four newly sequenced species and 18 environmentally isolated strains. Our phylogeny, based on 619 orthologous genes, shows environmentally isolated species and strains interspersed with clinically isolated counterparts, suggesting that there have been many transitions between humans and the natural environment in this clade. Our findings highlight the breadth of environments these yeasts inhabit and imply that many clinically isolated yeasts in this clade could just as easily live outside the human body in diverse natural environments and vice versa. 
    more » « less
  4. Abstract PremiseThe evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to‐date has examined pitcher evolution from a quantitative morphometric perspective. MethodsIn the present study, we used comparative morphometric approaches to quantify the shape space occupied byHeliamphorapitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. ResultsOur results showed thatHeliamphorapitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. ConclusionsOverall, our study demonstrates that diversification and convergent evolution of carnivory‐related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end. 
    more » « less
  5. Iochroma orozcoaeA.Orejuela & S.D.Sm.,sp. nov.(Solanaceae) is described from the Andean forests of Cundinamarca in the eastern cordillera of Colombia.Iochroma orozcoaewas first collected by the eminent Spanish priest and botanist José Celestino Mutis in the late part of the 18thcentury, but the specimens have lain unrecognised in herbaria for over 200 years. The species shares many features with its closest relative,Iochroma baumiiS.D.Sm. & S.Leiva, but it differs from it in having small flowers with five corolla lobes and few inflorescences per branch, located near the shoot apex with 1 to 4 (–8) flowers, fruits that are greenish-yellow when ripe and its restricted geographic distribution. A description ofI. orozcoaeis provided, along with a detailed illustration, photographs of live plants, a comparison with closely-related species and a key to all Colombian species ofIochromaBenth. In closing, we emphasise the value of historical collections for the knowledge of biodiversity. 
    more » « less
  6. The structure and function of biochemical and developmental pathways determine the range of accessible phenotypes, which are the substrate for evolutionary change. Accordingly, we expect that observed phenotypic variation across species is strongly influenced by pathway structure, with different phenotypes arising due to changes in activity along pathway branches. Here, we use flower colour as a model to investigate how the structure of pigment pathways shapes the evolution of phenotypic diversity. We focus on the phenotypically diverse Petunieae clade in the nightshade family, which containsca180 species ofPetuniaand related genera, as a model to understand how flavonoid pathway gene expression maps onto pigment production. We use multivariate comparative methods to estimate co-expression relationships between pathway enzymes and transcriptional regulators, and then assess how expression of these genes relates to the major axes of variation in floral pigmentation. Our results indicate that coordinated shifts in gene expression predict transitions in both total anthocyanin levels and pigment type, which, in turn, incur trade-offs with the production of UV-absorbing flavonol compounds. These findings demonstrate that the intrinsic structure of the flavonoid pathway and its regulatory architecture underlies the accessibility of pigment phenotypes and shapes evolutionary outcomes for floral pigment production. 
    more » « less